2250 Journal of Mechanical Science and Technology (KSME Int. J.), Vol. 20, No. 12, pp. 2250~ 2264, 2006

Unsteady Electroosmotic Channel Flows with the Nonoverlapped
and Overlapped Electric Double Layers
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Department of Mechanical Engineering, Dong-A University,
Busan 604-714, Korea

In micro- and nanoflows, the Boltzmann distribution is valid only when the electric double
layers (EDL’s) are not overlapped and the ionic distributions establish an equilibrium state.
The present study has numerically investigated unsteady two-dimensional fully-developed elec-
troosmotic flows between two parallel flat plates in the nonoverlapped and overlapped EDL
cases, without any assumption of the Boltzmann distribution. For the study, two kinds of un-
steady flows are considered : one is the impulsive application of a constant electric field and the
other is the application of a sinusoidally oscillating electric field. For the numerical simulations,
the ionic-species and electric-field equations as well as the continuity and momentum ones are
solved. Numerical simulations are successful in accurately predicting unsteady electroosmotic
flows and ionic distributions. Results show that the nonoverlapped and overlapped cases are
totally different in their basic characteristics. This study would contribute to further under-
standing unsteady electroosmotic flows in micro- and nanofluidic devices.
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Subscripts

) . Indices

m . Anions

D . Cations

S . Indices (p, m)

1. Introduction

With the advent of micro- and nanofluidic de-
vices, the electrokinetics has drawn increasingly
more attention because of its feasibility and eftfi-
ciency for controlling microflows in a variety of
applications : for example, lab-on-a-chip, sensors
and actuators, and analytical chemistry. A solid
surface in contact with an infinitely large extent of
electrolyte solution (e.g. =SiOH in aqueous so-
lution) inherits a certain amount of charges (e.g.
=SiO~ on the surface, either by ionization of a
surface group or by ion adsorption, while the
counterions are released into the solution (e.g.
H*). It leads to a formation of the electric double
layer (EDL) immediately next to the surface, with
a net amount of excess-counterion charges that
electrically counterbalance the surface charges.
Outside of the EDL, on the other hand, the bulk
of the fluid is electrically neutral so that it is not
affected by the surface charge. The excess coun-
terions in the EDL move by an externally appli-
ed electric field and then drive the surrounding
fluid in the EDL to move with them. Subsequent-
ly, the fluid motion in the EDL drags the fluid
outside of the EDL to also move sequentially due
to the fluid viscosity, finally resulting in a bulk
fluid motion. Such an electrokinetic phenomenon
is called the electroosmosis. Here, the character-
istic thickness of the EDL, A, often called the
Debye shielding distance or EDL length, depends
on the ionic concentration in the bulk of the fluid
and is typically at nano scales [see Li (2004) for
more details].

In this study, we assume that the electrolyte
solution is composed of two species whose prop-
erties are symmetric, i.e. 2= —Z2xr—2 Where 2
and z are respectively the valence numbers of the
cations and anions. Figure 1 shows distributions
of the volumetric electric-charge density, ., for
three different values of the ratio of the EDL
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Fig. 1 Distributions of the volumetric electric-charge
density in the steady state with three different

nondimensional EDL lengths

length to the channel half-width (nondimension-
al EDL length), x=A/k, in the steady electro-
osmotic flow between two infinite parallel flat
plates that are negatively charged. Details of the
numerical method will be explained in the next
section. Here, the volumetric electric-charge den-
sity is defined as

pe:FZ<CP_Cm) (D)

where Cp and C,, are the molar concentrations of
the cations and anions, respectively, and F' the
Faraday constant. Therefore, it is expected that,
for the negatively charged surface, the volumetric
charge density should be positive in the EDL,
whereas elsewhere it should be zero so that the
fluid is electrically neutral.

In case of the EDL length much smaller than
the channel half-width (i.e. k=A/h2<1) that is
typical of most microflows, the bulk of the fluid,
except for the very thin EDL immediately next to
the surface, has a zero volumetric charge density
so that it is not affected by the external electric
field (see the extreme case of x=1/100 in Fig. 1).
In that case, most of the researchers assume the
Boltzmann distribution for the ionic concentra-
tions, Cs, with little loss of accuracy, as follows :

zsF
Cs=0C exp(— 13372// > (2)
where ¥ is the electric potential due to the EDL,
Cy the molar ionic concentration in the bulk of
the fluid that is electrically neutral, zs the valence
of the cations or anions, R the gas constant, and
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T the absolute temperature. In a very thin EDL,
the intrinsic electric-field strength (= /A where
¥ is the electric potential at the surface or the
zeta potential) becomes very large and, if the ex-
ternal electric field is not extremely high, its in-
fluence on the electric field and hence on the ionic
distribution is negligible in comparison with the
intrinsic electric-field strength (Li, 2004). There-
fore, the assumption of the Boltzmann distribu-
tion is valid in the case with the EDL length
being much smaller than the channel half-width.
Otherwise, however, it is no longer valid.

As the channel half-width decreases to a nano-
scale comparable to the EDL length, the region
of electrically neutral fluid far away from the sur-
face becomes narrower and finally disappears (see
the case of x=1/4 in Fig. 1). With further de-
creasing channel half-width, the EDL’s attached
to the two surfaces (plates) are overlapped and
thus interact with each other. In other words,
the volumetric electric-charge density no longer
vanishes even at the centerline (see the case of
k=1 in Fig. 1). Under the Boltzmann-distribu-
tion assumption, the ionic-concentration field
should be in equilibrium and the charged surface
should be in contact with an infinitely large fluid
medium so that the fluid far away from the sur-
face is electrically neutral. In such an overlapped
case, therefore, the Boltzmann assumption cannot
be applicable at all due to the above-mentioned
second requirement even in an equilibrium state
(Qu and Li, 2000 ; Li, 2004 ; Kwak and Hasselbrink,
2005). In addition, when the ionic distribution
is changing with time despite the overlapped
EDL’s, the assumption is not valid, either.

In the present study, two kinds of unsteady
flows are considered both in the nonoverlapped
and overlapped EDL cases : one is the impulsive
application of a constant electric field and the
other is the application of a sinusoidally oscillat-
ing electric field. In the former flow, it is analyzed
how the concentration fields of the cations and
anions, as well as the flow field, vary with time in
the transient state and finally get steady after a
constant electric field is impulsively applied to
an initially stagnant, electrically-neutral fluid in
channel. In the latter flow, on the other hand, it is
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analyzed how the flow field varies with time in a
fully time-periodic state when the external electric
field oscillates sinusoidally.

Only a few studies have been performed on the
time-evolution of the flow field for the impulsive-
ly started electroosmotic flow (Dose and Guiochon,
1993 ; Soderman and Jonsson, 1996 ; Li, 2004 ;
Kwak and Hasselbrink, 2005) and for the sinus-
oidally oscillating electroosmotic flow (Dutta and
Beskok, 2001 ; Oddy et al., 2001 ; Erickson and
Li, 2003) . However, most of them investigated un-
steady electroosmotic flows for the very small
EDL length in comparison with the channel half-
width (x¥<1), assuming that the Boltzmann dis-
tributions were already established for the ionic
concentrations before the fluid started to flow.
Therefore, they had to confine themselves to the
nonoverlapped EDL cases. By contrast, only an
exception can be found in Kwak and Hasselbrink
(2005) to our best knowledge. They performed
numerical simulations on unsteady two-dimen-
sional electroosmotic channel flow with signifi-
cant EDL overlapping (¥=1/3) in the case of
a constant electric field, and then found that a
long nanochannel established an equilibrium state
quite slowly and the timescale was determined not
by diffusion across the EDL, but by diffusion or
convective transport along the channel. In addi-
tion, they pursued how the concentrations of the
cations and anions evolved in the transient state
by solving the relevant governing equations with-
out any assumption of the Boltzmann distribu-
tion.

The objectives of this paper are to numerically
investigate unsteady two-dimensional electroos-
motic flows between two infinite parallel flat
plates without assuming the Boltzmann distribut-
ion, and to compare the results for the nonover-
lapped EDL fields (#<1) with those for the over-
lapped ones (xk~1). For the study, the ionic-
species and electric-field equations as well as the
continuity and momentum ones are solved using
the finite difference method. In the present study,
we assume that the external electric field is ap-
plied along the channel, that is in the stream-
wise direction, and the flow field is fully devel-
oped in the absence of pressure gradient. The
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assumption enables one to perform numerical sim-
ulations based on the reduced one-dimensional
computation (see the next section for more de-
tails). What make this study distinct from the ex-
isting ones are as follows. Firstly, this study does
not assume any Boltzmann distribution for the
ionic species even for the nonoverlapped EDL
field, as well as for the overlapped one. Most of
the existing studies assumed the Boltzmann dis-
tribution in the nonoverlapped EDL case. Espe-
cially, no investigation without any Boltzmann
assumption has been performed on the oscillat-
ing electroosmotic flow to our best knowledge.
Subsequently, it investigates the flow and ionic-
species fields according to the ratio of the EDL
length to the channel half-width for the non-
overlapped (#<1) and overlapped (k~1) EDL
fields. In most of the existing studies, such an in-
vestigation has been executed separately in the non-
overlapped EDL case or in the overlapped one.
Finally, it also investigates the oscillating elec-
troosmotic flow with the overlapped EDL field.
No investigation on the flow cannot be found in
literature to our best knowledge. Although based
on one-dimensional simulation, the present nu-
merical method involves most difficulties that
may be encountered in general multi-dimensional
simulations, implying that it can be readily ex-
tended to more complex electroosmotic flows.
This study would contribute to further under-
standing unsteady electroosmotic flows in micro-
and nanofluidic devices.

2. Numerical Method

We have performed numerical simulations on
unsteady two-dimensional fully-developed incom-
pressible electroosmotic flows of a dilute two-
species electrolyte solution confined between two
infinite parallel flat plates apart by micro- or
nano-meters. The appropriate governing equa-
tions for the flow field can be written as

aui_

axi—o (3)
Ous  Qusu; _ 1 0p Pui _ Pe g
ot + ox o ox:  Yowox; o E: (4

where x; and wu; are respectively the Cartesian
coordinates and their corresponding velocity com-
ponents, f the time, E; the external electric-field
components, p the pressure, o the fluid density,
and v the kinematic viscosity. Here, the electro-
osmotic flow can be driven through the body
force term, —o.E:/p, in Eq. (4), that is through
interaction between the electric-charge distribu-
tion in the fluid and the external electric field.
As already mentioned, we assume that, with the
absence of pressure gradient, the flow field is fully
developed in the streamwise direction. In such a
case, since the convection term can be neglected
in Eq. (4), the two-dimensional fully-developed
electroosmotic channel flow reduces to one-di-
mensional problem (Dutta and Beskok, 2001 ;
Oddy et al., 2001 ; Li, 2004). With the fully-de-
veloped assumption, the governing equation for
the streamwise velocity, #, can be rewritten as

2
%—?Zu%—;— if Evey (5)

where vy is the surface-normal coordinate with its
origin at the centerline (y=0) and E, the exter-
nal electric field applied along the channel. The
external electric-field forcing mode, ey, is given
as follows :

ef:{H(t) (6)

sin(2zwt)

where H (¢) is the Heaviside function [H (¢) =1
for =0 and otherwise  (#) =0] and the exter-
nal electric-field forcing frequency. Notice that,
in Eq. (6), the former electric-field forcing mode
corresponds to the impulsively started electroos-
motic flow while the latter mode does to the
sinusoidally oscillating one.

With the fully-developed assumption, the molar
concentrations of the cations and anions, C, and
Cnm, can be obtained from the following species
equations (Hu et al., 1999 ; Lin et al., 2004 ; Kwak
and Hasselbrink, 2005 ; Qian and Bau, 2005):

1 9C, _ 3°C

p 2E 0 [~ 0¥
D ot of TRT oy ! ay} )
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where D is the ionic diffusion coefficient (we
have already assumed that the electrolyte solution
is symmetric, i.e. Dp=Dn=D and zp=—2zn=2).
The electric potential due to the EDL, ¢, satis-
fies the following one-dimensional Poisson equa-
tion (Li, 2004):

2

e =0 ©)
where ¢ is the fluid permittivity. Notice that,
since 0. is not constant, the above equation can-
not be readily integrated. Equations (5) and (7)-
(9) constitute a set of governing differential equa-
tions for predicting unsteady electroosmotic flows
and ionic distributions in the nonoverlapped and
overlapped cases. Notice also that the governing
equations are free from the Boltzmann-distributi-
on assumption.

Most materials obtain electric charges when
they are brought into contact with an aqueous
solution and various plausible explanations for
such an phenomenon can be found in literature
(Li, 2004) . In the present study, we assume that a
certain amount of cations are released from the
surface into the fluid due to ionization of a sur-
face group, resulting in a negatively charged sur-
face. That is, the net amounts of electric charges
on the surface and in the fluid are equal in strength
but different in sign, leading to the following re-
lation (in case of the two-dimensional fully-de-
veloped electroosmotic channel flow) (Li, 2004 ;
Kwak and Hasselbrink, 2005):

h
2<70=—/:h Oedy (10)

where 0, is the surface electric-charge density
and /7 the channel half-width. Notice that the
EDL zeta potential, &, can be estimated, using a
simple dimensional analysis, as

_ 0o/

§0—T (11)
To solve the second-order differential equations
(5) and (7)-(9), appropriate boundary condi-
tions are necessary at the two surfaces (y==L4).
Numerical simulations are performed only on the
upper half-channel (0<y<}/) due to the geo-
metric and physical symmetry and, thus, no-gra-

dient rule, /0y, is applied for the dependent
variables (%, Cp, Cr and ) at the centerline (y=
0). On the other hand, the boundary conditions
at the upper surface (y=/) are given as:

u=0 (12)
o
%Z% (15)

The first one corresponds to the no-slip condi-
tion, the next two ones to the no-flux of the ca-
tions and anions through the solid surface, and
the last one to the condition of a constant surface
electric-charge density.

The governing differential equations, (5) and
(7)-(9), are integrated in time using a second-
order semi-implicit fractional-step method: a
third-order Runge-Kutta method (RK3) for the
electric body-force term and a second-order Crank-
Nicolson method for the diffusion terms. In space,
on the other hand, the governing equations are
resolved with a finite-difference approach and
all the spatial derivatives are discretized with the
second-order central difference scheme. The non-
uniform spatial grids are generated using the tan-
gential hyperbolic function with a resolution of
M =257 such that the near-wall region is more
resolved. To validate the code, a numerical sim-
ulation has been performed on the impulsively
started electroosmotic flow for k=1/3 and its re-
sults are compared with Kwak and Hasselbrink
(2005). Details of the comparison will be ex-
plained in the next section. The section also con-
tains the numerical results for the impulsively start-
ed electroosmotic flow and sinusoidally oscillat-
ing one.

3. Results

In the present study, numerical simulations
have been performed mainly for x=7/%=1/100
and 1 to predict unsteady electroosmotic flows re-
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spectively in the nonoverlapped and overlapped
EDL cases, where A is the EDL length defined
as (Li, 2004)

/1:

[ eRT }1’2 (16)

2F%22Cy
For the study, we consider a symmetric unary
electrolyte, that is zp=—zp=2z=1. In addition,
the nondimensional zeta potential is set to be
&'=Fz8%/RT=—235 (corresponding to &=
60 mV at 20°C) and the Schmidt number is Sc=
v/ D, following the study of Kwak and Hasselbrink
(2005).

3.1 Impulsively started electroosmotic flow

At first, we have numerically investigated how
the fluid flow and ionic distributions vary with
time in the transient state for the impulsively start-
ed electroosmotic flow in the nonoverlapped and
overlapped EDL cases. For the study, numerical
simulations start immediately after the impul-
sive application of a constant external electric
field [e,=H(t)], in concurrence with the im-
pulsive contact of the surface with a stagnant,
electrically-neutral aqueous solution. Notice that,
immediately after the impulsive contact, a certain
amount of cations are released into the fluid and
simultaneously the surface becomes negatively
charged [refer to Eq. (10) ]. It is assumed, subse-
quently, that the cations released from the surface

are accumulated in the the extremely thin layer

0 05 1
y/h
(a)

immediately next to the surface [see Kwak and
Hasselbrink (2005) for more details]. On the other
hand, the electric field due to the EDL, ¢, at the
initial instant can be obtained by directly solving
the Poisson equation (9).

To validate the code, a numerical simulation
has been performed on unsteady electroosmotic
flow for k=A/h=1/3 and the typical results are
compared with those obtained from the two-di-
mensional simulation by Kwak and Hasselbrink
(2005) . Figure 2 shows distributions of the anion
concentration and streamwise velocity at two dif-
ferent times, tD/#*=0.03 and 1.0, in case of x=
1/3, compared with those of Kwak and Hasselbrink
(2005) . Exact agreement between our results and
Kwak and Hasselbrink’s ones is found in the
figure, implying that the present numerical meth-
od can well predict the unsteady electroosmotic
flows and ionic distributions. In the figure, U, is
the electroosmotic velocity, defined as

VumSaBe s
Equation (17) is well known as the Helmholtz-
Smoluchowski formulation which relates the elec-
troosmotic velocity, Ueo, to the surface zeta po-
tential, &, and external electric field, Eo.

After verifying the numerical method, we have
conducted numerical simulations for k=1/100 (non-
overlapped case) and (overlapped case), whose
results are shown in Figs. 3 and 4, respectively.

| ST — ""'@"--,b..@_'@_
L,
s
'Hk.lg
)

0.5 T

0 0.5 1
yih

(b)

Fig. 2 Validation of the numerical method : distributions of (a) the anion concentration and (b) streamwise
velocity at different times, #D//#*=0.03 (solid lines) and 1.0 (dotted lines), in the transient state for
k=A/h=1/3, compared with those (denoted by (O) obtained from the two-dimensional simulation by

Kwak and Hasselbrink (2005)
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Figure 3 shows the time-evolution of the stream-
wise velocity and ionic concentrations in the
transient state for the nonoverlapped EDL case.
Notice that, since the flow is fully developed and
thus the convection terms in Egs. (7) and (8) au-
tomatically vanish, the ionic concentrations are
decoupled from the streamwise velocity. At first,
to see if the electroosmotic flow becomes steady,
the time traces of the streamwise velocity at the
centerline (y/%2=0) and the anion concentration
at the surface (y/h=1) are shown in Fig. 3(a).
The traces indicate that the fluid flow and ionic
distributions vary with time in the early stage and
then finally become steady. Subsequently, the dis-
tributions of the streamwise velocity and cation
and anion concentrations at different times in the
transient state, together with the steady solutions,
are shown in Figs. 3(b)-(d), respectively.

As expected, the flow and ionic-concentration
fields change sharply across the EDL immediately

=
tn
o

Fig. 3

next to the surface that is very thin in comparison
with the channel half-width. The cations released
from the surface immediately after the impulsive
contact of the fluid and solid surface are trans-
ported toward the centerline due to the ionic dif-
fusion and then finally attain a new equilibrium
state (steady state), while the cations are assem-
bled at high concentration in the very thin EDL
due to the attractive force with the negatively
charged surface [see Fig. 3(c)]. On the other
hand, the anions that are uniformly distributed
at the initial instant (Cn=C,) move toward the
centerline due to the repulsive force from the
surface [see Fig. 3(d)]. While the anions move,
they have a convex-shaped distribution owing
to their conservation law and their concentration
at the surface steeply decreases. Notice that, the
fluid has excess cations in the very thin EDL,
whereas in the bulk of the fluid it is electrically
neutral (see also Fig. 1). Here, it is notable to

101

0.9
y/h
(d)

(a) Time-evolution of the streamwise velocity at y//2=0 and the anion concentration at y/4=1, and

profiles of (b) the streamwise velocity and (c), (d) cation and anion concentrations in the transient state

under a constant electric field [e;=H (¢)] for k=A/h=1/100 in the overlapped case
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mention why the average of volumetric electric-
charge density varies with the nondimensional
EDL length in Fig. 1. In this study, we assume
that the surface electric-charge density, 0o, is
constant. From Eq. (10), we can derive {pe)=
— 0o/ h, or pey/zFCo=2x8", where {-) is the
y-spatial average, implying that the volumetric
electric-charge density augments linearly with in-
creasing nondimensional EDL length for a con-
stant & in this study.

The time-evolution of the streamwise-velocity
distribution is shown in Fig. 3(b). Excess cations
being formed in the very thin EDL move due to
their interaction with the external electric field
and then drive the surrounding fluid in the EDL
to move with them. Subsequently, the fluid mo-
tion in the EDL drags the fluid outside of the
EDL to also move sequentially due to the fluid
viscosity, finally resulting in a plug-type velocity
profile across the channel. That is, after a suffi-

1¢
""*-M‘_".
.. (:r'm.

?J --------- gy s,

o5k T ——, S —
L’e() u

0 ' '
0 0.2 0.4
tD /R

ciently long time, i.e. in the steady state, the flow
becomes flat in its velocity distribution. It is ma-
inly due to no significant physical force involved
in the bulk of the fluid outside of the EDL and
a finite streamwise velocity at the edge of the
EDL. In the very early stage, i.e. £D//#?<0.0001,
it is found that the effect of the finite streamwise
velocity at the edge keeps on penetrating into the
bulk of the stagnant fluid and, thus, the stagnant
fluid still remains in the central region, as ob-
viously shown in Fig. 3(b). Such a phenomenon
is very similar to the Stokes’ first problem where
the infinitely large extent of stagnant fluid also
moves due to the impulsively started surface
motion (Currie, 1974). However, since the ionic-
concentration fields in the EDL and, thus, the
streamwise velocity at the edge of the EDL still
change even in the transient state, the present
electroosmotic flow is somewhat different from

Stokes’ first problem.

1.5

1, D.OOS_, 0.02,
5,0.1,0.2, steady

u c,

L.“r(‘ L] c.'fm
00 05 1

y/h
(d)

Fig. 4 (a) Time-evolution of the streamwise velocity at y//2=0 and the anion concentration at y/4=1, and

profiles of (b) the streamwise velocity and (c), (d) cation and anion concentrations in the transient state

under a constant electric field [e;=H (¢) ] for k=A/h=1 in the overlapped case
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It is remarkable to estimate the transient time-
scales for reaching a steady (or quasi-steady)
state in the nonoverlapped case where the EDL is
negligibly thin in comparison with the channel
half-width (¥<1), i.e. ¥=1/100. A simple dimen-
sional analysis on Eqgs. (5) and (7)-(8) provides
with the following three transient timescales :

AtD 1 AkD _, AtD ¢

WS K " (—=&")

(18)

Here, the first timescale comes from the viscous
effect of fluid, while the second and third ones
come from the diffusion and electric-field effects
of ions, respectively. Notice that, since At.>Afl.
for any x (we assumed that &*=—2.35 in this
study), the transient timescale can be estimated
by the bigger one out of Af, and Af. In case
of k=1/100 and Sc=1000, A#,~0.001%%/D and
At.~0.0001%%/D, implying that the fluid-viscosi-
ty effect is dominant in determining the transient
timescale : Af~0.001%4%/D (for example, At~
1 us for =1 pm and D=10""m?/s). Such an
estimation is in fairly good agreement with the
result indicated in Fig. 3(a).

Figure 4, on the other hand, shows the corre-
sponding simulation results in the overlapped
EDL case, i.e. k=1. Results indicate that the char-
acteristics in the overlapped case are basically
different from those in the nonoverlapped case. It
is found that, in the overlapped case, since the
EDL length is comparable to the channel half-
width, that is A~/ (even if A=/ in the present
case), all the variables, such as the ionic concen-
trations and thus the streamwise velocity, change
all over the channel. In other words, there exists
no electrically neutral region in the channel (see
also Fig. 1), indicating that the assumption of the
Boltzmann distribution is not valid at all in the
overlapped case.

As indicated in Figs. 4(c) and (d), the cations
that are released from the surface at the initial in-
stant are transported toward the centerline mainly
through the ionic diffusion due to their very high
concentration near the surface (the cations must
also move toward the surface due to the attractive
force with the negatively charged surface, but its
effect is relatively small in comparison with the

diffusion effect). That is, the cation concentration
at the centerline increases with time in the transi-
ent state, while at the surface it decreases. On the
other hand, the anions move toward the center-
line, mainly due to the repulsive force from the
negatively charged surface. In the long run, the
ionic distributions reach a steady state. Since
the fluid has a positive volumetric electric-charge
density, that is excess cations, all over the channel,
the external electric field drives all the fluid in
channel to move nearly at the same time from the
initial instant, leading to a flat velocity distributi-
on in the early stage. As the time goes by, the flow
rate through the channel increases, but more rap-
idly near the centerline than near the surface due
to the viscous effect of surface, resulting in a
parabolic velocity distribution at the steady state.
Such an observation can be obviously found from
Fig. 4(b).

Comparison between Figs. 3(a) and 4(a) in-
dicates that it takes longer for the flow to reach a
steady state in the overlapped case than in the
nonoverlapped case for the same channel half-
width. The relations, At,~0.001/%/D and At.~
W/ D (owing to k~1) in Eq. (18), imply that the
transient timescale can be determined mainly by
the ionic diffusion effect: At~ #4%/D (for exam-
ple, At~1ms for z=1 gm and D=10"°m?/s).
This estimation is in approximately good agree-
ment with that in Fig. 4(a). Collectively spea-
king, the transient timescale in the overlapped
case is determined mainly by the ionic diffusion,
whereas in the nonoverlapped case it is mainly
by the fluid viscosity. Therefore, the former time-
scale is much longer than the latter one (/? versus

0.001%%/D).

3.2 Sinusoidally oscillating electroosmotic
flow

Subsequently, we have investigated how the
fluid flow varies with time in the fully time-pe-
riodic state for the sinusoidally oscillating elec-
troosmotic flow in the nonoverlapped and over-
lapped EDL cases. For the study, numerical sim-
ulations are performed by externally applying a
sinusoidally oscillating electric field along the
channel [Epe;=E,sin(2rwt)]. Notice that, since
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the ionic-species equations (7)-(8) are decou-
pled from the streamwise momentum equation
(5), the change in the forcing mode, i.e. from
e;=H (t) to e;=sin(2zwt), exerts no effect on
the ionic distributions (Cp and Cy) and thus the
electric field (¢), but does an effect on the stream-
wise velocity (). In the fully time-periodic state,
therefore, only the streamwise velocity becomes

Fig. 5

fully time-periodic, whereas the ionic distribu-
tions and thus the electric field keep the steady
state in the same way as in the constant external
electric-field case (see Fig. 1). Figures 5 and 6
show the time-evolution of the sinusoidally oscil-
lating electroosmotic flow in the fully time-peri-
odic state for the nonoverlapped and overlapped
EDL cases, respectively.
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(a) Time-evolution of the streamwise velocities at v/42=0 (solid lines), 0.5 (dotted lines) and 0.95

(dashed lines) together with the forcing mode (es) (denoted by O) (left side), and profiles of the
streamwise velocity (right side), in the fully time-periodic state under an oscillating electric field [e;=
sin(2zwt) ] for k=A/h=1/100 in the overlapped case : wh?®/D= (a) 5000, (b) 1000 and (c) 100
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The plots on the left hand side in Fig. 5 show
the time-evolution of the streamwise velocities at
y/h=0 (at the centerline), 0.5 and 0.95 (near the
surface), together with e,=sin(27wt), at differ-
ent forcing frequencies, w/h?/D=>5000, 1000 and
100, for x=1/100 in the nonoverlapped case (for
example, w=5MHz, 1 MHz and 100 kHz for
h=1 pm and D=10"°m?/s, respectively). Results

05} B

Fig. 6

indicate that in all cases the flow oscillates in the
streamwise direction at the same frequency as the
external electric field. Here, since the oscillating
electric field affects only the very thin EDL im-
mediately next to the surface, the corresponding
oscillating flow occurs near the surface, i.e. at y/
7=0.95, and its streamwise velocity has nearly
the same phase with the electric-field forcing mode.
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(a) Time-evolution of the streamwise velocities at v/42=0 (solid lines), 0.5 (dotted lines) and 0.95

(dashed lines) together with the forcing mode (es) (denoted by O) (left side), and profiles of the
streamwise velocity (right side), in the fully time-periodic state under an oscillating electric field [e;=
sin(2zwt) ] for k=A/h=1 in the overlapped case: w/k?/D= (a) 200, (b) 100 and (c) 10
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Subsequently, the effect of oscillating flow in the
EDL propagates sequentially into the stagnant
fluid outside of the EDL due to the fluid viscosi-
ty, leading to an oscillating bulk flow in channel.
Therefore, the oscillating flow away from the
edge of the EDL lags behind the external elec-
tric field, and the phase lag augments with in-
creasing distance from the edge. Such a pheno-
menon can be obviously found on the left hand
side in Fig. 5.

It is remarkable to mention that the sinusoid-
ally oscillating electroosmotic flow at a very high
frequency, i.e. wh?/D=5000 [see Fig. 5(a)], is
very similar to the Stokes’ second problem where
an infinitely large extent of stagnant fluid also
oscillates due to the sinusoidally oscillating sur-
face motion (Currie, 1974). The streamwise ve-
locity in the Stokes’ second problem is given, in
an analytical form, as

u(y,t) =Usexp(—ky)sin(2rwt—Fky’) (19)

where U, denotes the amplitude in the surface
velocity, ¥’ the normal distance from the surface,
and k=+ymw/v. Figure 7 shows comparison of
the velocity profiles between the sinusoidally os-
cillating electroosmotic flow and the Stokes’ sec-
ond problem at the same frequency, wh?/D=
5000. Here, the surface velocity, U, is set equal
to the velocity at the centerline obtained in the
steady state for the constant electric-field case

T (ﬁ_r=l
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Fig. 7 Profiles of the streamwise velocity at 2rwt=
/2 and 7 in the fully time-periodic state for
wh?/ D=5000 together with the constant elec-
tric-field case, compared to the Stokes’ sec-
ond problem (denoted by Q)

[see Fig. 3(b)]. It is seen that the two velocity
profiles are in exact agreement with each other
except for the near-surface region, indicating the
analogy of the unsteady electroosmotic flow to
the Stokes’ second problem. Such analogy can
also be found in Dutta and Beskok (2001).

To investigate its meaning, the parameter % ap-
pearing in Eq. (19) can be rewritten, in the non-
dimensional form, as

. 1/Sc

e b/ ok (20)
__(1/Sc) (W/D) Aty
o 1/(1) Afw

where At, and Af, are respectively the transient
timescales due to the fluid viscosity and due to
the oscillation. Therefore, the nondimensional para-
meter (%%)% can be estimated as the ratio of the
viscous transient timescale to the oscillation one.
With decreasing electric-field forcing frequency,
the oscillation timescale increases and thus the
nondimensional parameter, (kk)2, decreases. In
such a case, the oscillation effect in the very thin
EDL penetrates deeper into the stagnant bulk fluid.
In other words, the penetration depth, sometimes
defined as 6=2/k (Curie, 1974), increases with
decreasing forcing frequency and consequently it
becomes larger than the channel half-width (&>
h) at a forcing frequency lower than a certain
critical value. It implies that the oscillating flow
developed by one EDL interacts with that by the
other EDL and, thus, its analogy with the Stokes’
second problem is not valid any longer. At such
a low forcing frequency, nevertheless, the charac-
teristics of amplitude and phase lag in the stream-
wise velocity can be approximately understood
using the analogy with the Stokes’ second prob-
lem. On the other hand, the plots on the right
hand side in Fig. 5 show profiles of the corre-
sponding streamwise velocity at 8 equi-spaced
different times in one complete period, together
with the constant electric-field case for compari-
son.

As can be already estimated from Eq. (19), the
amplitude of the streamwise velocity that has its
maximum value in the very thin EDL decays ex-
ponentially with increasing distance from the edge
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of the EDL. At the same time, the decaying rate
diminishes with decreasing forcing frequency and
thus kzm. Dutta and Beskok (2001) inves-
tigated analytically the sinusoidally oscillating
electroosmotic flow by assuming the Boltzmann
distribution, and found that, depending on &=
J2 kkh~ /@ for a constant x#=1/100 in this
study, the flow ranges from a case analogous to
the Stokes’ second problem (for high &) to an os-
cillatory “pluglike” flow (for low &). Their find-
ing is in excellent agreement with the present ob-
servation : the former flow corresponds to wh?/
D=5000 in Fig. 5(a) while the latter one does
to wh?®/D=100 in Fig. 5(c). Equation (19) also
shows that there is a phase lag in the bulk flow
and the phase lag varies proportionally to the
distance from the edge. In addition, the variation
rate diminishes with decreasing forcing frequency
and thus k=¢m. In other words, it can be
clearly observed from the left-side plots in Fig.
5 that the phase lag diminishes with decreasing
forcing frequency and disappears at wh?/D<
100.

Figure 6 shows the time-evolution of the stream-
wise-velocity profile in the fully time-periodic
state under an external electrical field oscillating
at wh?/D=200, 100 and 10 for k=1 in the over-
lapped EDL case (for example, @=200 kHz, 100
kHz and 10 kHz for =1 gm and D=10"° m?/s,
respectively). The figure indicates that the flow
characteristics in the overlapped case are basi-
cally different from those in the nonoverlapped
case. As evidently shown in Figs. 3(a) and 4(a),
the transient timescale for the overlapped case
is much larger than that for the nonoverlapped
case. Consequently, the unsteady effect due to the
oscillating electric field can occur at the forcing
frequency much lower than the nonoverlapped
case.

Since the volumetric electric-charge density is
positive all over the channel due to the large
nondimensional EDL length (1~ /%) (see Fig. 1),
all the fluid in channel is concurrently driven to
also oscillate by the oscillating external electric
field. Unlike the nonoverlapped case, therefore,
the amplitude in the streamwise velocity is very
small near the surface because of the viscous effect

from the surface, and then increases gently with
the distance from the surface, leading to a para-
bolic distribution in the amplitude. At a relative-
ly high forcing frequency, i.e. wh?/D=200, there
is a comparatively large phase lag between the
electric-field forcing mode and the flow motion
near the surface, i.e. at y//%=0.95, but little phase
lag through the fluid inside the channel [see Fig.
6(a) ]. Such an observation is much different from
the nonoverlapped case. In the nonoverlapped
case, the phase lag that is very small near the sur-
face increases linearly with the distance from the
surface (or the edge of the EDL). In the over-
lapped case, on the other hand, the phase lag that
is comparatively large near the surface hardly
vary with the distance. The phase lag between the
forcing mode and fluid flow diminishes with de-
creasing forcing frequency and finally approaches
zero when the frequency exceeds a certain crit-
ical value, ie. wh?/D=10 [see Fig. 6(c)]. At
such a low forcing frequency, the amplitude dis-
tribution of the streamwise velocity also becomes
equal to that obtained for the constant electric
field.

4. Conclusions

In this paper, we have numerically investigated
unsteady two-dimensional fully-developed elec-
troosmotic flows between two infinite parallel flat
plates in the nonoverlapped and overlapped EDL
cases without any assumption of the Boltzmann
distribution. Notice that the Boltzmann assump-
tion is valid only when the EDL’s are not over-
lapped and the ionic distributions establish equi-
librium. For the study, two kinds of unsteady
flows were considered : one was the impulsive ap-
plication of a constant electric field [e,=H (¢) ]
and the other was the application of a sinusoid-
ally oscillating electric field [e,=sin(2zwt)].
Two nondimensional EDL lengths, k=A/h=1/
100 and 1 where A denotes the EDL length and 7
the channel half-width, were selected respectively
for the nonoverlapped and overlapped cases. For
the numerical simulations, the ionic-species and
electric-field equations as well as the continuity
and momentum ones were solved using the finite
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difference method. Here, it was assumed that a
constant surface electric-charge density was im-
posed on the two surfaces.

At first, we performed numerical simulations
on the impulsively started electroosmotic flow,
and then found that the ionic distributions and
thus the flow field varied with time in the early
stage, leading to a steady state in the long run. In
addition, the nonoverlapped and overlapped cases
were totally different in their basic characteris-
tics. In the nonoverlapped case, the transient time-
scale was determined mainly by the fluid viscosi-
ty and the flow in the steady state was charac-
terized by a flat velocity distribution. In the over-
lapped case, on the other hand, the timescale
that was determined mainly by the ionic diffu-
sion was much smaller than that in the nonover-
lapped case. Besides, the flow became of a para-
bolic velocity distribution after a sufficiently long
time.

Subsequently, we performed numerical simula-
tions on the sinusoidally oscillating electroosmo-
tic flow, and then found that the flow oscillated
in the streamwise direction at the same frequency
as the external electric field. In addition, the flow
characteristics in the nonoverlapped and over-
lapped cases were basically different. In the non-
overlapped case, the flow at a very high frequency
was very similar to the Stokes’ second problem :
the amplitude in the streamwise velocity that had
its maximum value in the very thin EDL decayed
exponentially with the distance from the edge of
the EDL and the phase lag with respect to the
electric-field forcing mode increased linearly. With
decreasing forcing frequency, the amplitude be-
came flatter in its distribution while the phase lag
diminished. In the overlapped case, on the other
hand, the unsteady effect due to the oscillation
could be attained at the forcing frequency much
lower than the nonoverlapped case. The ampli-
tude was parabolic in its distribution regardless
of the forcing frequency. For a relatively high forc-
ing frequency, there was a comparatively large
phase lag between the forcing mode and the flow
near the surface, but little phase lag through the
fluid in channel. The phase lag near the surface
diminished with decreasing forcing frequency.
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